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1. Attrbutes

All project members had an active role in the development of this project. The decision on
which project to do, and well as the major decisions of the final project, were a collaborative effort
by the entire group. The calculations of the individual systems were divided among the specific

group members. Table 1.1 basically shows the tasks assigned to each group member.

Table 1.1 Member Responsibilities

Ted G. Bagwell * group leader
* coordination of activities

* reactor thermal-hydraulics

Oscar J. Lessard * core neutronics

< materials considerations

background research in gas reactors

John A. Rennie- space logistics

« micrometeroid shielding

e

solar irradiation analysis

Sandra M. Sloan heat rejection system

John Valentine

cycle thermodynamics
« radiation shielding

* turbomachinery



II. Introduction

The motivation behind the design project was to provide power for propulsion for an
unmanned GEO to Mars mission in a 2 to 6 month time span and to provide 6 years of terrestrial
power on Mars. Research was conducted on the German HTR reactor, current U.S. government
journal articles on particle bed space reactors, and the British MAGNOX carbon dioxide reactor of
the 1960's. After this background research it was determined that a carbon dioxide gas cooled
pebble fueled reactor would be feasible to meet our initial motivation. The main reasons for this
choice were the availability of carbon dioxide on the Martian surface and the small reactor size with
high power densities achieved with particulate type fuel.

The design objectives consisted of obtaining an approximate electrical power level of 300
kW in order to provide power for MPD thrusters for the GEO to Mars journey and obtaining a high
cycle efficiency in order to keep the reactor thermal power output around 1 MW. The entire system
mass objective was under 10,000 kg in order to ensure that the system could feasibly fit on one
shuttle payload. This led to the choice of heat pipe radiators for waste heat rejection as the total
mass of the heat rejection system was of utmost concern. The reliability provided by a redundant
system was another design objective in order to meet mission goals.

The report outline consists of seven different sections which are contained in the body of
the report. The first section consists of neutronics which calculates flux distributions and fuel
requirements. The second section is made up of thcrmal-ﬁydraulics considerations for caléﬁlatin’g
reactor core temperature and pressure characteristics. Section three consists of the thermodynamic
cycle calculations wt?iéh defines states and arrives at an ovcrall: cycle efficiency. The
turbomachinery selections can be seen in section four. The heat pipe radiators for waste heat
rejection are explained in section five. The sixth section contains the shadow shield configuration
necessary to protect electronic components from radioactivity. Section seven is comprised of

propulsion and space logistics in order to succesfully complete the GEO to Mars mission.



III. Body
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1. NEUTRONICS

Introduction:

A pebble bed nuclear space reactor is needed to supply power for propulsion and
instrumentation from GEO to Mars and to supply terrestrial power on the Martian surface. The
entire lifetime of the reactor is limited to seven years. The power required is one megawatt thermal.

The concept of the pebble bed reactor is based on a combination of the German HTR and
recent research on the fixed particle bed space reactor. The advantages of this type of reactor are its
small size and its high power density due to the large surface area of the fuel particles 1. The gas
coolant will be carbon dioxide because of the availability of this gas on the Martian surface. The
Martian atmosphere is over 80% COj . The use of CO7 in a reactor is based on the British
MAGNOX reactor of the 1960's 2. The only serious problems encountered with this design is the
carbon dioxide and graphite corrosion activation at temperatures exceeding 810K.

The conceptual design of the pebble bed reactor can be seen in figure 1.1. The turbine-
compressor drive shaft goes through the center of the reactor and BeO/B4C control drums are
used for reactivity control. The fuel is a BISO type consisting of UN fuel and a PyC cladding. A
very thin coating of stainless steel makes up the outer surface of the fuel pebble in case

temperatures exceed the 810K discussed above. It can be observed that this is an axial flow pebble

bed reactor.

General Assumptions: ™

Certain assumptions were made before neutronics calculations could be accomplished. -
Since the reactor core consisted of an annular cylindrical shape, it was difficult to choose a
corresponding computer code for neutronics calculations. It was finally decided that a two group
approximation using a finite difference approach would be used. This allowed one to determine the
radial flux profile by breaking the center turbine-compressor, the reactor vessel walls, the reactor

core, and the control drums into separate regions for neutron flux approximations. The axial




Reactor 30 cm

Figure 1.1 Conceptual Reactor Design
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neutron flux distribution was then assumed to be a cosine shape which is the normal case for
cylindrical geometry.

The gas coolant voiding in the reactor core was assumed to be 37%. This is true as long as
the annular radius is larger than five fuel pebble diameters 3. The other 63% of the reactor core
volume was assumed to consist of equal volumes of fuel and cladding. This was considered a
reasonable estimate as the fuel radius was 79% of the entire fuel pebble radius. This should allow
sufficient fission product gathering in the BISO fuel pebble. The fuel pebble concept can be seen in
figure 1.2, |

The center turbine-compressor shaft was used as it was our intention to have a reactor
diameter equalling that of the turbine and compressor. This would allow for a jet engine type
arrangement where the turbine and compressor are welded directly to the reactor vessel. This
would also allow for reduced piping and reduced overall area required for the reactor assembly.

The choice of the center shaft made it necessary for one to have an intermediate reactor
instead of a fast reactor. This reactor type was chosen to keep the fast neutron flux as low as
possible on the surface of the shaft. Neutron embrittlement could become a serious problem if the
center shaft is exposed to high neutron fluxes.

These are a few of the general assumptions needed before neutronics modelling could be

considered. Many other minor assumptions will be discussed in the text as deemed necessary.

Neutron Flux Modelling:
The DIF2DK two group, one dimensional diffusion theory code supplie;d,in the NUEN

429, Spring 1987 course was used for neutronics modelling. The two group equations as solved

by the computer code are written as 4:

VDVP - Za, 9, - f,.,;_ P, +
and

V- Dzv¢z - fa.-;_¢z. + 21.,2 ¢. = 0 ¢.9

L S
Kesf (V'ZF. b, + V24, ¢z> =0 @)
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Figure 1.2 Pebble Fuel Design
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where °
D, = Fast g rovp diffusion coefficient
Dy 2 2hecmal grovp diffuwioa coefFicieat
Kegf = mvul fiy“ca‘{';on Factor
Za, = macroseapic fast groy absorption cross section
Sa; T mocroscopre thermal absorption cross section
Sin2: Macrouofic Slaw;r\) down &ross section

Z¥, = macroscopic Fission cross section (€ast)

N macroscopr ¢ Pissioa cross sectian (thermal)
\'2 neutrons relecased per fission
@,

fast nevtven Flua
¢-z 2 thermal nevtrom flux

[T Y

The code was slightly modified to accept the inputed thermal power and energy per fission to

calculate the actual neutron flux values in the radial direction. The equations used were:

P
- -~ A - -~ L'v?) - M Q'H
j£:| (V Zﬁ- 8+ Vif,;ﬂ é—“—,f') ¢A ancL ¢A = a ¢A )

——

K
2
where P = power in Mev
K = ene~yy Pper fission
: = normalized Flua
¢j = ad:u«l ‘Flux
v nevtveas released per fission

Mcrosco,o’oc, ~F;ss'.an Cross sec‘{:w.—\

. aumber of intrdds i fiadte differeace approach

A\l

M
4+

A finite difference approaal is uscd to solve the two group problem. This allows one to define
different material regions and the input of DIF2DK requires the neutronic properties of each of
these regions. These properties are the diffusion coefficient and the macroscopic absorption,
slowing down, and nu-fission cross sections. |

A computer code called START was written to solve for the properties needed for the
DIF2DK input deck. The microscopic absorption, slowing down, nu-fission, and transport cross

sections are required in order to calculate the properties needed. In order to come up with the two
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group microscopic cross sections, it was necessary to use the computer code ANISN to collapse
the 27 group cross sections. For this intermediate reactor the thermal group was defined from 0 to
1 ev and the fast group was defined from 1 ev to infinity. This is an accepted energy group
distribution for an intermediate reactor 5. The code START calculates the required number

densities from the given material densities in order to determine the macroscopic cross sections as

follows:
L Mo
= L 1-s)
N M
whece .

Z

a't(am nvmloer o‘er\s.c‘(:y

A, = AVUgw\rc;s nvmber (6.02 x10%?)
P = density
M = atomic or molecular we;jk't

The diffusion coefficient is determined by:

!
D = 3 =, @.6)

where f '

D = diffusion coefficent
i‘tr

1]

 Macroscopic {Tons,aor‘t Cross Seg-éion

-

The detailed input deck of START can be seen in table 1.1 and the output description can be seen

in table 1.2.

The START program is capable of accepting different fuel enrichments, fuel and cladding

volume ratios, and fraction of BeO seen in the control drum compared to B4C in the radial

direction. The output of START is then used as the input to DIF2DK. The input deck of DIF2DK

is desribed in table 1.3. The stainless steel reactor vessel walls and the center turbine-compressor
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Table 1.1
Input Deck of START

The order of microscopic cross section input is as follows:

absorption, slowing down, nu-fission, and transport

Line 1: Oxygen-16, fast

Line 2: Oxygen-16, thermal
Line 3: Uranium-235, fast
Line 4: Uranium-235, thermal
Line 5: Uranium-238, fast
Line 6: Uranium-238, thermal
Line 7: Carbon-12, fast

Line 8: Carbon-12, thermal
Line 9: Iron, fast

Line 10: Iron, thermal

Line 11: Beryllium-9, fast
Line 12: Beryllium-9, thermal
Line 13: Boron, fast

Line 14: Boron, thermal

Line 15: Nitrogen, fast

Line 16: Nitrogen, thermal
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Table 1.2:
Output of START

Line 1: Macroscopic absorption cross sections in the following order:
U-235 fast, U-235 thermal, U-238 fast, U-238 thermal
Line 2: Macroscopic nu-fission cross sections in the same order

The remaining lines have the following output order:
diffusion coefficient, macroscopic absorption cross section,
macroscopic slowing down cross section, macroscopic nu-fission
Cross section

Line 3: Reactor core properties, fast

Line 4: Reactor core properties, thermal

Line 5: Reactor vessel walls and center shaft properties, fast
Line 6: Reactor vessel walls and center shaft properties, thermal
Line 7: Control drum properties, fast

Line 8: Control drum properties, thermal
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Table 1.3:
Input Deck of DIF2DK

Line 1: # of regions, # of materials, fractional convergence criterion, thermal power

Line 2:

Line 3:
Line 4:
Line 5:
Line 6:
Line 7:

Line 8:
Line 9:

(Mev), energy per fission

geometry (2-cylinder), left B.C. (1-symmetry), right B.C. (0-zero flux at extr.
boundary)

region #1, material in region, # intervals in region, region thickness

same as above for region #2

same as above for region #3

same as above for region #4

material #1, fast diffusion coefficient, fast macroscopic absorption cross section,
fast macroscopic slowing down cross section, fast macroscopic nu-fission cross
section

same as line 7 for thermal properties

same as above for material #2 fast properties

Line 10: same as above for material #2 thermal properties

Line 11: same as above for material #3 fast properties

Line 12: same as above for material #3 thermal properties

** regions

1) center shaft and inner vessel wall

2) reactor core

3) outer vessel wall
4) control drums
** materials

1) homogeneous reactor core

2) iron
3) contol drums (BEO/B4C)



shaft were assumed to be iron for neutron cross section purposes. The reactor core was assumed to

be a homogeneous mixture of equal volume PyC cladding and UN fuel and a volume fraction of

0.37 of CO» gas. The control drums were assumed to be one region with the option of varying the

amounts of BeO and B4C. The output of the DIF2DK program consists of the normalized fast and

thermal neutron fluxes, the actual fluxes and the value of Keff. START and DIF2DK program

listings can be seen in appendices 1.1 and 1.2 respectively.

Neutron Flux Calculations:

The initial inputs of the DIF2DK program consisted of a 7 cm region of center shaft and
inner vessel wall (3 cm shaft radius and 4 cm inner vessel wall region), a 10 cm region of reactor
core, a 3 cm region of outer vessel wall, and a 20 cm region of control drums. The fuel enrichment
and annular core radius were varied numerous times and it was finally determined that a fuel
enrichment of 5.6% resulted in a 12.8 cm annular core radius for criticality or Keff equal to one.
An infinite reflector (control drum) was approached with a region equal to 10 cm. This was a good
result as it produced a reactor assembly of about 65 cm in total diameter which compares favorably
well with turbine and compressor diameters. It was also a favorable result when considering the
magnitude of the neutron flux at the center drive shaft surface. The thermal and fast flux profiles
can be seen in ﬁgufes 1.3 and 1.4 respectively. The fast ﬂﬁx at the surface of the shaft was less
than 4E14 and the thermal flux was less than 2E13. These flux values do not produce any neutron
embrittlement problems for the steel shaft. _ .

The ratio of the fastTlux to thermal flux throughout the reactor core was on the order of 15
to 1 with the peak fast flux in the core being 7.3E14 and the peak thermal flux being 4.7E13. The
peak to average flux ratio for both thermal and fast fluxes was on the order of 1.12. The average
flux ratio was calculated by averaging the 20 data points within the core. This peak to average flux
ratio and the average fluxes were passed on for thermohydraulic considerations. The equation used

to break the power into fast and thermal components is given by:

4

2" K [(Fre & + Tee W * (S0 b+ 2528 ] C-7)
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wWhere -

A power dens;“:y
K = enecgy released per fission

S‘szb : '“OWOS‘Of;c €1ssion cross section of U-234
2.‘Fzs : MacvosCopic fissian eross section of U-236

¢o = ‘Fﬂo‘t ‘F'V;‘
theermal Flux

S

After performing the calculation it was observed that 91% of the power is generated by the thermal
flux as is expected even though the fast flux magnitude is much greater.

The method used to account for fuel burnup during the seven year lifetime will be to
increase the fuel enrichment. The axial flux distribution will be of the cosine shape as discussed
previously for cylindrical geometry. The annular radius of 12.8 cm of the core can be turned into
an cquivalént cylinder radius by assuming that the volume of the annular core is equal to the
volume of a cylinder. The equivalent cylinder radius becomes 18.5 cm. With a reactor height of 30
cm, the height to diameter ratio of the rcacior core becomes 30/37 or 0.81. This value compares
well to the other HTGR ;cactorsv which» have height to diameter ratios of 0.75 to 0.90. A complete
summary of reactor parameters can be seen in table 1.4.

Fuel Burnup Considerations:

The burnup of U-235 in the UN fuel in the reactor core is due to consumption by fission

and parasitic absorption of U-235 by radioactive capture. Assuming a thermal reactor, the equation

used to calculate the burnup of U-235 is given by ©:

Consumption rate = )05 (1+ ) P Viay U8



Table 1.4:
Reactor Parameters

Thermal Output
Electrical Output
Power Density
Active Core Volume
CO2 fraction
UN fraction
PyC fraction

Peak to Average Flux Ratio

Power Production
Thermal Flux
Fast Flux

Control Drum Diameter

Reactor core annular radius

Central Shaft Diameter

Reactor Vessel Wall Diameter

inner
outer
Peak Fluxes
thermal
fast
Reactor Height
Height to diameter ratio

1 MWt

300 kWe
3.1 W/cm3
32,330 cm3
0.37

0.315
0.315

1.12

91%
9%
10cm
12.8 cm

6cm

4cm
3cm

4.7E13
7.3E14
30cm
0.81



where - |
X = 0.1L19 which 13 dhe radiative C.a'o“;ur¢
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P - power in MeV

The value of alpha accounts for the parasitic absorptions and is 0.169 for U-235. Using the above
equation it can be seen that 3.16 kg of U-235 will be consumed during the seven year lifetime.
Since 7.61 kg of U-235 is available for the 5.6% enriched reactor fuel, it can be calculated that an
8.0% enriched fuel is needed for a total of 10.77 kg of U-235 at reactor startup. Detailed
calculations on fuel burnup can be seen in appendix 1.3. The value of Keff at startup using

DIF2DK and the 8.0% enriched fuel is 1.228.

Poisoning Considerations:
Since this is an intermediate reactor, the fission product poisoning of Xenon-135 and

Samarium-149 can be neglected. This is true as the buildup of these fission products is negligible

in an intermediate space reactor.

Decay Heat Cohéiderations:

After a few days of reactor opergt_ion, the beta and gamma radiation emitted from decaying
fission products amounts to app,roximaitcly seven percent of the total thermal power dutput of the
reactor. For the one megaWat,t-reactor,; the amount of power available at shutdown due to decay
heat will be slightly less than 70 watts of thermal power. Recall that 91% of the power produced is

from the thermal spectrum. At any time after shutdown, the ratio of power due to decay heat to the

original power is given by 7:
VPt | PUD | Plartd
P i Po Po '
UMHC, : P - POWW

Po = Of\ymal power Le‘ﬁ)m s'mftalaum
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The use of this equation along with the guidance in Lamarsh 7 results in an available power of
about 14 watts at one hour after shutdown. This decay heat has been considered and should not be
of much concern because of the low power output of the pebble bed space reactor. A method of

cooling could be accomplished by circulating the gas coolant through the core after shutdown.

Fuel Considerations:

The fuel pebble is 0.602 cm in diameter and is composed of equal volumes of 8.0%
enriched uranium nitride fuel and pyrolitic graphite cladding thus forming a BISO type fuel pebble.
The PyC was chosen because of its outstanding heat transfer and fission product gathering
characteristics as revealed by previous space reactor design work 1. A thin coat of stainless steel is

placed on the outer surface of the fuel pebble in case the coolant temperature in the core exceeds

810K 8. At this terﬁperature the CO2 cooiant and PyC cladding of the fuel will undergo corrosion

activation. The equal volumes of fuel and cladding result in the fuel radius being 79% of the entire

fuel radius. This provides plenty of fission product gathering when comparing the fuel pebble to

other BISO fuels. After siffiple volume and number density calculations (see appendix 1.3), a list

of fuel characteristics was created in table 1.5.

Control Drums and Reactivity Control:
The BeO and B4C control drums serve as a means for reactivity control. There are a total of
seventeen 10 cm diameter drums surrounding the reactor core. 120° of the drum is made up of the

boron absorber and the other 240° is made up of the beryllium reflector. The drums are capable of



Table 1.5:
Fuel Characteristics

UN Fuel Mass

Fuel Earichment

Mass of U-235
critical mass at startup
fuel burnup

Specific Power

# of Fuel Pebbles

Pebble Diameter

145.7 kg

8.0%

10.8 kg

7.6 kg

3.2 kg

6.86 kW/kg UN
180,000

0.602 cm



adding positive or negative reactivity by létting the reactor core see either the reflector or absorber
in the radial direction. Any combination of reflector and absorber is possible with the control drum
method.

The reactor also has a mechanism to inject a poison boron dust to cause reactor shutdown
as the boron in the control drums may or may not have the capability of shutting down the reactor

especially just after startup.

Other Materials Considefations:

The top and bottom of the reactor core are constructed with a porous grate to allow
maximum carbon dioxide flow with enough support to hold the fuel pebbles in place. The
thermohydraulics section will discuss these grates in more detail.

| The center turbine-compressor drive shaft design is limited by the temperature, the neutron
flux at its surface, and the speed of rotation. The maximum temperature will be less than 1000K
and the maximum surface flux will be 4E14. These two factors along with normal turbine and
compressor drive shaft rotation will allow for the use of almost any ordinary steel. The shaft will
be made of a high quality steel of 6 cm in diameter. This should allow for no malfunctions of the
shaft due to fatigue or shearing stresses over the seven year lifetime of the system.

The radius Sf the inner reactor vessel wall is 4 cm thick and the outer vessel wall is 3 cm

thick. The extra 1 cm of the inner wall is used to help reduce the neutron flux at the drive shaft

surface.

Masses of the Reactor System:

The masses of the reactor system were calculated using the volumes and densities as

follows:

m = VP LL’O)
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The sample calculations can be seen in appendix 1.3 and the masses of the reactor system can be
seen in table 1.6. The mass of the control drum drive assembly was assumed to equal the mass of

the 17 control drums. This appeared to be a conservative estimate.

Conclusion and Recommendations:

The pebble bed space reactor has been designed after many iterations of optimization and
appears to have a good chance of becoming reality. Future work would consist of even more
iterations of the entire system and more in depth studies of the effects and reliability of the center

drive shaft. A smaller reactor system with higher fuel enrichments may be a possible alternative

also.




Table 1.6:
Reactor System Masses

UN fuel

PyC cladding

CO2

Steel shaft, vessel walls
Control drums

Control drum drive assembly
Total reactor system

145.7 kg
163 kg
0.02 kg
131.0 kg
114.5 kg
1145 kg
522 kg
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Appendix 1.1

DIF2DK Code
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Appendix},3

Sample Calculations



L NP _
(anr\u,ar from 7 4o 19.% LM)

eviitical vadive = 12,8 em
T(DF(30) = 461D cm® T {(19.2)°(320) = 36,995 cm?
Core = 36,999 - 96/6 = 32,331 (m”

‘vaivme ()"F anfh/'ur
= 1077 Tem?*

e cross sectivaal area of core (axial)

(199" = 7 (DY = 123w ot
(0.3i$)( 32,331 cn?)
]‘-}31 9/('“3 -

~ /539 ¢nmt

[0, 14 em3 of UAN
J9S. 74 Ky of unN

e volume of UN =
o igY cn?  x

e mass of un =
s> MussS U{ U-23S R (5-,(9‘}{' en(”_k‘,tl_> a-& S‘t“/{‘u,a -G_,( Cf,'{_. (‘,,f,'{7
i3.625

L0Sk (235.09) =
- 224 . 95¢D

SLY U-23s
94.9% v-23¢ L9949 (22¢.05)
N . id.0067
252.13
W;-: 216 - 131625 _ . o
7. U 3 - L0822 - 52
(-0522) (14579 k5 wN) = Z i Ky U-23S
* Mmeass o‘{: V-225  burned vp Juf.‘f\j [.¥etime
- : . _ x =z O.7¢9
1.0 (1+) P 8jg,, = .23 Yy P= 1 Muw,
123 Ypuy = JeSdapp T = Ble K
s Muss D'F U:’ZBS ﬂ?(o{ch ‘FW 7 Y e /'ﬁe*-’/“‘—
7.01 kg + 3Ju ks = 1077 K, of U-23¢
e naw Hrel enrichment v
107 Ky _ 0~ W, 2O (235.0¥34) = IB.632
""5'7‘/ Kj - e 0,739 A A .?(2) ( 23¢. OSD‘;, = 2"7«’60
N = 14. w?
251.92

P = ,0793
2 (2) = .9207

N\

793 Y = 0% encicheh fuel



_POwer_ PRodULTION,
g = K [(5425 ¢+ Pt F (T2 ? +~ffzs¢>5b‘~’]
K = 200 MeVv /fission
a{ = .7 x 108 N fem*-sec

. i1 .
@6 b y.1 = /0 “/(m“.sec

Z‘Fz% fst = 5.37 ~i0% cmt
5‘4‘19, slow = O
§¥Z> 'p‘—'at' /.90 x 10~ (.m—'
< , - i
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2. REACTOR THERMAL-HYDRAULICS

The reactor thermal-hydraulics are incorporated into the code PEB, which was created
specifically for this project. This code models the steady state pressure drop and temperature rise
for a pebble bed reactor system in one diminsion, using a rough finite difference technique. PEB
assumes constant mass flow rate as input by the user. The four basic calculations performed by the
code are: the pressure drop across the inlet and outlet grid plates, the pressure drop across the core,
the fluid temperature rise across the core, and the fuel pebble centerline temperature. The code is

written in standard fortran 77 and uses Sl units. A code listing is given in Appendix 2.1.
PROPERTY ASSUMPTIONS

The CO, coolant was assumed to be an ideal gas. This conclusion is based on the principle

of coresponding states!. The principle of corresponding states predicts that a gas will behave
ideally if its reduced temperature is approximately 2.0 and its reduced pressure is approximately
1.0. Since our reduced states are approximately correct, the ideal gas law will correctly model our
system.

Four g;;s properties are needed for the PEB codé; the density, the thermal conductivity, the

constant pressure specific heat, and the viscosity. The density of the gas is found using the ideal

gas relation,
P=RT (2.1)

where P is the pressure, R is the gas constant, and T is the temperature. The thermal conductivity,

constant pressure specific heat, and the viscosity were approximated as a linear function of



temperature from experimental data®. The three correlations used are shown in equations 2.2, 2.3,

and 2.4.
K = 7.781X10°3 T(°K) - 6.59X103 (W/m°K)  (2.2)
C,=0.634 T(°K) + 6835 (1 / kg °K) (2.3)
p=3.783X108 TCK) +3.894X100(Ns/m? (2.4)

The material property necessary for the code is the thermal conductivity. For our system,
there are three materials: stainless steel 316, pyrolytic carbon, and uranium nitride. Equations 2.5,

2.6, and 2.7 show the relations used.

0.361 3

Ky =1-864 T (2.5)
2

Kp, ¢ = 4256 - 0.0027 T (2.6)
K¢ = 9.248 + 0.0157 T (2.7)%

REACTOR INLET AND OUTLET GRID PRESSURE DROP -

-

The pressure drop across the two grids was approximated by a correlatation predicting the

pressure drop across a grid with rounded cdges4. The correlation predicts a head loss AH ,

27
AH=—‘"2'

P (2.8)

where p is the density of the fluid, ®, is the inlet velocity, and € is given by equation 2.9,



4

_ _2
_WEa-H+1-9
- -2

f 2.9)

where ' is a function of the porisity of the grid. Our calculations assumed a conservative constant
value of 0.44 for (' f is the flow area fraction, defined to be the ratio of the grate flow area

divided by the inlet flow area, or for the grate in Figure 2.1,

2
£, .- D
fmlet‘ 4 (P) (210)
_ 2
f D

outlet = 7 ) 2.11)

where € is the porisity of the particle bed. Using these correlations, the pressure drop across the

two plates were calculated in the PEB code.

—f s

frontal . side

Figure 2.1 Sectional View of Core Grid Plates



CORE PRESSURE DROP

The pressure drop across a cell, AP, was approximated by the correlation’

’

HP. 2
AP=wy=-~LTqy
Va, 2% (2.12)

where H is the height of the bed, p is the density of the fluid, and u, is the mean velocity of the gas

in the gaps at that cell. The hydraulic diameter d, is given by,

1-¢€ (2.13)
where d is the diameter of the individual pebble and € is the porisity of the bed. The function, y , is

a function of the Reynolds number, R, and €, as is shown in equation 2.14.

-1 R -0.1

) +6G—) (2.14)

Y= 320(11%63

FLUID TEMPERATURE RISE

The heat transfer through the core was found by applying conservation of energy in steady
state. The form of the energy conservation equation, assuming q'; is the linear heat generation rate,

is given in equation 2.13. )
q's= rhcpArea (Tout- Tio) (2.15)

The PEB code assumes that c;, is a constant at T, and divides the core region into a set number of

cells, as specified by the user. The total heat produced in the core is input by the user, then PEB

subdivides the total power to all of the cells in a sinusoidal pattern.The linear heat source, q', is



assumed to be a sinusoidal source, with zero power produced at the actual edge of the reactor.
Although this is not entirely correct, it does well enough for our calculations, since the total amount
of energy deposited in the fluid will be the same. Also, this source shape will overestimate the fuel
temperature in the center of the reactor, which is a safety plus. With the inlet temperature and the
heat generation rate known for the cell, the cell outlet temperature can be found using equation
2.15. The PEB code then uses the outlet temperature of cell i to be the inlet temperature of cell i+1,

thus it is a rough finite difference code.
FUEL CENTER TEMPERATURE

To find the temperature in the center of the individual pebbles, T, three basic thermal
resistances are calculated, the thermal resistance across the convection surface, the thermal
resistance across the layers of cladding, and the thermal resistance through the fuel itself. The

center fuel temperature is then found by using the equation 2.16, where Q is the heat generated in

one pebble.
Te=Tou + QU Reonv + Retag + Riuet) (2.16)

The thermal resistance across the convection surface can be found using the Nusselt number

correlation for a packed sphere bed’,

-

hD
Nu, = =— = f:Nu
47k, TS 2.17)

where h is the heat transfer cocfficicnt, D is the diameter of an individual pellet; k. is the
conductivity of the gas, f¢ is the arrangement factor, and Nuy is the Nusselt number for a single

ball. The arangement factor, f, is given by equation 2.18.



fe=1+15(1-¢) (2.18)

The Nusselt number for a singe sphere is given in terms of a laminar and a turbulent Nusselt

number,

Nu, = 2+'\/Nu12+Nut2 (2.19)

The turbulent and laminar Nusselt number are in turn given by the following empirical correlations,

0.5
_ Re 0.33
Nu; = 0.663¢) "(Pn 2.20)

0.037 (Re—e)o's Pr

1 +2.443 (%)_0'1 (pr0-567_ 1)

Nut-:

(2.21)

With the Nusselt number known for the pebble, the heat transfer coefficient, h, can be determined

from the Nusselt number correlation in equation 2.22.

_Nuk,

h==5 (2.22)

-

Since the thermal resistance through the cladding then will be equal to,

R — Tsurface - Tbulk
conv _‘Q_—' (2.23)
and
h= !

Tsurface - Thuik (2.24)




then,

Reonv= gk 7D
UKe T (2.25)

where r is the radius of the pebble. The resistance through N layers of cladding will be equal to,

(2.26)

-

Figure 2.2 Cutaway of fuel pellet showing node numbering

The thermal resistance through the fuel itself can be calculated using the 1-D conduction equation

with a source term. The solution to this is given in equation 2.27.

1
Riyel= 50—
fuel 81(11'115 (2.27)



Using equation 2.16, 2.25, 2.26, and 2.27, the final solution for the centerline fuel temperature

will be,

N-2

Zkl (1' 1)

r r

1 Kot Vo Toel

Teenter= Tbulk'*'Q(Nu kan+ : 4r * 81(111'115)

(2.28)

In axial flow pebble beds, there is a signifigant amount of radial conduction and radiation that will
occur. This phenomenon was not accounted for in our calculations, due to the complexity of the
problem. However, the radial heat transfer regime will only serve to " spread out " the heat source,

thus our calculations are still conservative in that our temperature distribution will appear to be

more peaked in the radial direction.
PEB INPUT AND OUTPUT DESCRIPTION

The input to the PEB code, shown in Table 2.1, is quite simple. Most of the input is self
explanitory, except the material number. This number corresponds to an identification number
contained in PEB. 50 is pyrolytic carbon, 61 is SS-316, and 82 is uranium nitride. Also, the apture

of the core plate refers to the ratio of D to P in Figure 2.1. One of the actual input decks to PEB is

contained in Appendix2.2.
Table 2.1 PEB Input description
line #
1 # of cells (NAX) # of layers in a total reactor length
. pellet NLAY)
2 inlet temperature inlet pressure mass flow rate

3 total reacor power




4 inner radius of outer radius of porisity of apture of

core region core region bed core plate

3 radius of fuel fuel material number

radius of first clad first clad material number

~l N

radius of second clad second clad material number

NLAY+4 ;adius of last clad last clad material number

An example PEB output is given in Appendix 2.3. The output is clearly labelled, therefore

no explination will be given.

RESULTS

The thermal-hydraulic calculations in PEB were carried out to determine the size of the
reactor, the size of the pebbles, the apture in the core grid plate, and the mass flow rate through the
core. All calculations were performed with the limiting parameters being that the fluid outlet
temperature could not exceed 900 °K and the fuel centerline temperature could not exceed 1800
%K. With these limiting margins, no serious interactions or material degredation will occur. In the
determination 6f the entire core size, a corroborative effort with the neutronics personnel had to be
maintained, since the overall core size affects both fields. In the end, however, there was a large
margin in which to work with and thus fxo severe problems were encountered. The size of the
individual pebbles was‘strictly a thermal—hydralics problem. If the pebbles are too large, the center
temperature will exceed the design criterion. Also, if the pebbles are too small, there will be the
possibility of signifigant manufacturing problems and too large of a pressure drop. Since we did
not know the extent of the manufacturing problems, the centerline fuel temperature was raised to a
maximum. The massflow rate was adjusted to obtain an outlet temperature of approximately 850

OK. Previous experiments6 have shown that the porisity of the particle bed will be 0.37, if the ratio




of the core radius to the pebble radius is greater than 5. Since our reactor radius is on the order of
10 cm and the pebbles are less than a centimeter in size, we could safely assume that the porisity is
a constant 0.37. The inlet temperature was assumed to be 500 °K and the inlet pressure was
assumed to be 6.9 MPa.

After several interations, the pebble size was found to be 0.6 cm in diameter. The mass
flow rate was 2.43 kg/s. The core size was found by the neutronics personnel. The final actual
input conditions are the ones listed in Appendix 2.2. With these input conditions, the output in
Appendix 2.3 was generated. These fcsults are displayed graphically in Figures 2.3, 2.4, 2.5, and
2.6.

Figure 2.3 shows the total pressure drop across the reactor. Notice that most of the
pressure losses are incurred at the inlet and outlet grid plate. Since this does not make intuitive
sense, there is a significant possibility that the correlation in equation 2.12 is either incorrect or is
used inapropriately. First, this is probably not the exact plate geometry that will be used, however
this should not be a large factor. The one factor that was overassumed was the C' factor. However,
in the end result, the pressure drop was assumed to be that of Figure 2.3, since this will be
conservative. |

Figure 2.4 shows the fluid temperature rise through the core. The outlet temperature was
found to be about 868 K, which is within our design criterion. Figure 2.5 shows the fuel center
temperature as a function of axial_ location. Two curves are shown, the uppermost being the hot
channel temperature distribution and the lower one being the average channel temperature
distribution. Both curves have a maximum of less than 1400 °K, which is well below the design
criterion. Figure 2.6 shows two curves, the average center fuel temperature and the fluid
temperature as a function of core axial distance. The calculations came out quite well, since the two

curves had nearly the same value at the outlet.
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Appendix 2.2 PEB Code Input
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Appendix 2.1 PEB Code Output
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3. BRAYTON CYCLE
INTRODUCTION

The Brayton cycle utilizes super-heated vapor throughout the cycle, the fluid does not boil
and does not operate in the liquid-vapor dome.This requires that turbomachinery have high
component efficiency to compensate for the work of compression that is introduced. An actual
Brayton cycle temperature-entropy diagram is shown in Figure 3.1, for the system shown in
Figure 3.2. The direct-closed cycle uses the primary working fluid for the entire cycle and
circulates the same gas repeatedly. Energy is added to the gas in the reactor, the gas is then
expanded through the turbine, the waste heat is rejected by the heat pipe radiator, and finally
compressed by the compressor. The reactor, turbine, and heat pipe radiator all have significant
pressure losses in the Brayton cycle due to the working fluid being gaseous. Also the pressure
losses within the ducting may be significant for the same reason.

Carbon dioxide was chosen as a working fluid for this particular design for several
reasons. First, the misson is proposed to spend most of its time on the Martian surface and thé
primary constituent of the Martian atmosphere is carbon dioxide. Therefore, in case of a minor loss
of coolant there would be an abundant suppply to refurbiéh the system. Also, in case of a major
loss of coolant, the reactor would be flooded with atmospheric gas, in this case the adverse affects
would be minimized by the fact that carbon dioxide is both the coolant and atmospheric fluid.
Carbon dioxide is alsd an extremely suitable fluid for material, thermal, and nuclear designs
because of inertness, good heat transfer characteristics , and low absorption cross section. Finally,
the departure of carbon dioxide from perfect gas laws results in less work of compression, this

increases the cycle efficiency (1).
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Figure 3.1 Brayton Cycle Temperature-Entropy Diagram
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Figure 3.2 System Brayton Cycle



THEORY
In order to evaluate the performance of a Brayton cycle the standard overall cycle
efficiency, 1, must be determined from Equation 3.1,

w

net

7, G.1)

where Q;j is the heat added to the system by the reactor and W is the net work done by the

system and is calculated by Equation 3.2:
C (3.2)

where W.. is the work produced by the turbine and W is the work necessary to run the
compressor. The turbomachinery is not ideal and therefore each component's performance is
determined by the efficiency of that component. The turbine efficiency ( ) is represented by
Equation 3.3:

My = T de~\ Wor |% (3.3)

whereas, the compressor efficiency ( N¢ ) is the inverse as in Equation 3.4:
-

Todeal 1ok

—_ A 34
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These efficiencies for the turbomachinery are given for the given working fluid and thermodynamic
conditions and thus by calculating the ideal work, the actual work can be determined. Equation 3.5

is used to calculate the actual work necessary to drive the compressor (W,) :



We =fff(fr;’ RN (3.5)

where c, is the specific heat at constant pressure, T, is the compressor inlet temperature, ¥ is the

ratio of specific heat at constant pressure to that at constant volume, and T is the compressor

pressure ratio. The work that the turbine and is defined by Equation 3.6:

W =ngelll- 7{2‘»—7 ] 3.6)
B

where T is the reactor outlet temperature, and B is the pressure losses between the compressor and

turbine and is defined by Equation 3.7:

i~ ) ("’/41\}//3/
4 2

In Equation 3.7 the pressures are at state 1, the reactor outlet, state 2, the turbine outlet, and states
3 and 4, the inlet and outlet of the compressor.
Once the net work is determined by subtracting Equation 3.5 from 3.6, the heat input by

the reactor (Q;, ) is the last necesséry calculation for determining the cycle efficiency. Equation 8

is used to calculate Q;, :

Qi = T (G Dy -] G3.3)

where the states are described above.
The work and heat input and output can also be calculated by ¢p AT across each component

if all of the temperatures around the cycle are known and the gas displays ideal characteristics

throughout:



Qin =cp (Ty -Tg) (3.9)

Qout =¢p(T2 -T3) (3.10)
WT = Cp (Tl -T2 ) (31 1)
We =¢, (T4 -T3) (3.12)

where Qg is the heat removed from the system by the heat pipe radiator (2).

RESULTS

In order to evaluate the closed-direct Brayton cycle several assumptions were made. It was
assumned that the pressure losses in the ducting would be insignificant compared to the losses
across the components, that the working fluid performs ideally throughout the system, that the
specific heat at constant pressure remained constant around the cycle, and that carbon dioxide is
closely approximated by argon in the turbomachinery. The last assumption allows for the use of
Ne=Np = 0.86 (3), while the third assumption results in the use of . =1.22 kJ/kg-K and ¥y
=1.290 for the entire cycle analysis. The last assumption also allows for the use of r,=1.90,and a
turbine pressure ratio of 1.75 (4). !

After defining the reactor inlet and outlet states and considering the above assumptions the
pressures at the turbine outlet and compressor inlet were found using the turbine and compressor

ratios. Once all of the pressures are known 3 can be calculated and was found to be B =1.0188 .

Using Equation 3.6 the turbine work was calculated to be W; =513 kW, then rearranging

Equation 3.11 the turbine outlet temperature was determined to be T, = 677 K. Considering that

our net work must be 300 kWe, for propulsion prurposes, the work to run the compressor was

found to be 213 kW. Rearranging Equation 3.12 the compressor inlet temperature was calculated



to be 428 K. Table 3.1 list the temperatures and pressures around the system and Table 3.2 list the
energy balance and cycle efficiency ( N =28.9%).

The assumptions made produced an overall cycle efficiency somewhat higher than expected
without a recuperator in the system. However, carbon dioxide is an excellent working fluid and

thus the system seems to be a feasible and beneficial design for the specific application it is

intended for.




Table 3.1 System Thermodynamic States

State Temperature (K)  Pressure (MPa)
1 850 6.58
2 677 3.76
3 428 3.63
4 500 6.90

Table 3.2 System Energy Balance

Qin
Qout
Wt
Wce

A

1038 kW
738 kW
513 kW
213 kW

28.9 %
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4. TURBOMACHINERY

Optimizing the cycle efficiency was a primary concern in choosing the turbine and
compressor for this system. However, a consideration of equal importance was chooosing
turbomachinery that utilized the system's unique design. The use of carbon dioxide as the primary
working fluid for the system constrained the availability of information and the applicability of
previously tested systems.

Cycle efficiency optimization for turbine and compressor considerations means achieving
the maximum efficiency for both components with minimum mass. In order to accomplish this the

turbine needs to have as high an inlet temperature as possible and the compressor pressure ratio

(tp) optimized. According to calculations by Blumenberg and Ruppe (1) component efficiencies of
NT=0.86 and 1C=0.86 can be expected for the turbine and compressor, respectively, for the
system characteristics under consideration. For tests typical of the system under consideration
compressor pressure ratios of rp=1.90 were found to be optimum by English (2). The combined
mass of these two components and the rotating shaft connecting them is estimated to be 215
kilograms by English.

The system's unique design (Figure 4.1), most significantly having the heat source located
between the turbine and compressor on the shaft is perfect for the use of axial flow
turbomachinery. dutlet flow from the reactor can more easily be dérected to an axial flow turbine
(Figure 4.2) for this design. Likewise, both inlet and outlet flow of the compressor is more easily
directed for this design with axial flow (Figure 4.3). Axial flow turbomachinery has the advantage
of higher efficiency over radial flow, but have the ;iisadvantage of a smaller pressure rise per unit
mass in the compressor. These effects balance themselves out and the design concern becomes the
factor that makes the axial flow turbomachinery the best alternative for this specific design.

Not much research has been conducted in the area of carbon dioxide turbomachinery and
therefore the parameters taken in references 1 and 2 may have some error. Since no available data
on turbomachinery could be found for carbon dioxide the efficiencies for both components were

taken from data for an argon working fluid at similar conditions. Argon and carbon dioxide have
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Figure 4.1 Reactor and Turbomachinery Schematic




Figure 4.2 Axial Flow Turbine
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Figure 4.3 Axial Flow Compressor



similar atomic masses, 40 and 44 amu respectively, and therefore the approximation is good as
long as the carbon dioxide does not dissociate. At the temperatures under consideration
dissociation has a very low probability and thus the approximation should be good as far as

turbomachinery is concerned.
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5. HEAT REJECTION SYSTEM

5.1 Introduction

Heat rejection techniques for space reactor systems are distinctly different from those used in
terrestrial reactor systems. Terrestrial reactors reject heat by convection to the atmosphere through
such mechanisms as cooling towers and to bodies of water such as cooling ponds or rivers. Space
power systems can employ neither of these techniques for dissipating waste heat. The only viable
mode of heat rejection for space power systems is that of radiation to the surrounding space. Space
power systems cannot employ convective heat rejection systems because they operate in a virtual
vacuum.

There are two operable types of radiator systems available for space power systems. The first
system employs a continous fluid loop which serpentinely winds through the radiator, such as the
pumped fluid radiator used on the Shuttle (Pearson and Dabrowski, p. 806). The second type
employs a heat pipe radiator system which transfers heat from the reactor coolant to heat pipes. A
heat pipe radiator system was chosen for the space power system under discussion.

The decision to use heat pipes was based on safe operating criteria for a long duration of
unmanned operation. The continuous fluid loop design has the disadvantage that if the radiator
sustains meteroid damage, there is a great probability that the entire cooling loop will be lost. To
compensate for this, redundancy and isolation valves must be built into the radiator system. This
addition increases system mass and reduces réliability, both critical requirements for space
operation of long duratien. The heat pipe radiator syst;m is a more reliable system because each
heat pipe operates independently of the other heat pipes in the radiator. If one heat pipe sustains
meteroid damage, the other heat pipes and cycle fluid are unaffected. The reactor coolant flows
through a main manifold which can be shielded for meteroid protection. By including sufficient
heat pipe elements to account for losses from meteroid damage and shielding the manifold, the heat
pipe radiator has a high level of reliability. In the system under discussion, it was also crucial to

have high levels of reliability in the radiator because one of the design criteria was that the power



system also be operable on the planet of Mars. The winds on Mars are equivalent to 20 mile per
hour winds on earth and dust storms are common. This criteria again pointed toward the use of a

heat pipe radiator to insure safe operation of the planet of Mars due to the independent operation of

each heat pipe unit.

5.2 Principles of Operation

The structure of a heat pipe is shown in Figure 5.1. The main regions are the evaporator
section and the condenser section. The pipe itself consists of the pipe wall, the wick, and the
working fluid. The heat pipe operates on the principle of capillary forces. In order for the heat
pipe to operate properly, the maximum capillary pumping head must be greater than the total
pressure drop in the pipe, which is made up of the pressure drop required to return the liquid from

the condenser to the evaporator and the pressure drop necessary to cause the vapor to flow from the

evaporator to the condenser and the gravitational head.

Heating Liquid Returning Cooling
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Figure 5.1 - Diagram of Heat Pipe

Energy is transferred to the working fluid of the pipe in the evaporator region. The working
fluid begins to evaporate and the vapor moves toward the condenser section of the pipe. When

cooled the fluid condenses in the condenser region. Capillary forces in the wick return the



condensate to the evaporator region.

Several characteristics of heat pipes are:

1. can operate in any orientation, evaporator position is not restricted (Dunn and Reay, p. 1)

2. very high effective thermal conductance

3. anear isothermal surface of low thermal impedance, the condenser surface of heat pipe will

tend to operate at uniform temperature (Dunn and Reay, p. 3).

In space the latent heat produced when the fluid condenses is dissipated by radiation to the
surrounding space. In order to increase the area of radiative heat transfer, fins can be attached to
the heat pipe. Since radiative heat transfer is proportional to ’1‘4, the quantity of energy radiated is
larger at higher temperatures. Thus, from the heat transfer standpoint, it is best to reject energy at
the highest temperature possible.

5.3 Selection of Materials
5.3.1. Working Fluid

The working fluid of the heat pipe was chosen to be sodium. Of primary importance was the
useful temperature range of the working fluid. The heat pipe radiator design criteria specified that it
should operate in the range of 400-800 K. The two working fluids considered whose useful range
fell between these two values were potassium and sodium. Two other working fluids, mercury and
cesium, had operating ranges which were compatible with the design criteria. Mercury was nbt
considered due to its toxicity and cesium was not considered due to its high cost. The principle
criteria for deciding upon a working fluid were latent heat, thermal conductivity, demonstrated
radial heat flux capability, and liquid surface tension. The corresponding properties for sodium and
potassium are shown in Table 5.1.

Table 5.1 - Properties for Sodium and Potassium

Thermal Radial Heat Flux Liquid Surface
Fluid Latent Heat Conductivity Capability Tension
Na 4400 K/kg 70 W/m °C 200-1250 W/cm? 1.5 N/m x 10

K 2050 kJ/kg 49 W/m°C 150-250 W/cm? 9.0 N/m x 102



Another means of comparing working fluids is provided by the Merit number, which is given by:

where Py Is the density of the liquid working fluid

oy is the surface tension
L is the enthalpy of vaporization or latent heat
H; 1s the viscosity of the liquid working fluid.

Sodium was chosen over potassium because it has superior qualities over the temperature range
of interest as shown in Table 5.1 and because it has a higher merit number than potassium. When
the Merit numbers at the boiling points of both fluids are compared, the Merit number for sodium is
and order of magnitude larger than that of potassium (Dunn and Reay, p. 91).

5.3.2. Container

The container material was selected to be stainless steel (SS 304). The criteria for the container

were compatability with the working fluid, strength, and thermal conductivity. The thermal

conductivities of several materials are shown in Table 5.2.

Table 5.2 - Properties of Container Materials

Thermal Conductivity
Material — (Wm°C)
Aluminum 205
Copper 394
™ Stainless Steel 304 17.3

Aluminum and copper both had significantly higher thermal conductivity than stainless steel,
but stainless steel was the only material which was compatible with sodium. Stainless steel is also
a stronger material than aluminum or copper, which contributes to the reliability of the system.
5.3.3. Wick

The wick material chosen was a stainless steel mesh, specifically 508 x 3600 mesh s/s twill.

The primary criteria for wick material was demonstrated radial heat flux capability with the working



fluid. Various types of wicks have been tested with sodium as the working fluid. The results are

shown in Table 5.3 (Dunn and Reay, p. 95).

Table 5.3 - Wick Performance with Sodium

Wick Material Radial Heat Flux (W/cmZ)
s/s mesh 230

various 200-400

3 x 65 mesh s/s 214

508 x 3600 mesh s/s twill 1250

The 508 x 3600 mesh s/s twill had the highest demonstrated radial heat flux capacity. This

particular mess twill has a small pore radius, resulting in a large maximum capillary head being

generated which aids axial flow.
5.3.4. Fin

Aluminum was chosen to be the fin material. The criteria used for selecting a fin material was
strength, weight, and thermal conductivity. Materials considered were aluminum and copper.
Stainless steel was also considered since the heat pipes themselves were to be fabricated from it.
The thermal conductivities of these three materials are shown in Table 5.2. The densities of the
materials are shown in Table 5.4 (Chi, p. 230).

Table 5.4 - Density of Fin Materials

Material Density

Aluminum 2700 kg/m3
- Copper ) 9000 kg/m3

SS304 7850 kg/m?>

The ultimate tensile strength was compared and stainless steel had the highest, followed by
aluminum, which had a slightly higher ultimate tensile strength than copper over the temperature
range of interest, 500-800 K (Chi, p. 231). Although stainless steel was strongest, it was
eliminated because of its very low thermal conductivity and high density. The ratio of thermal

conductivity to density was computed for aluminum and copper. The ratio was 7.6 X 102 for




aluminum and 4.4 X 102 for copper. Thus, aluminum was chosen since it had the greatest
strength and the largest ratio of thermal conductivity to density.
5.3.5. Coating of Heat Pipe Radiator

The energy radiated by a surface is proportional to the emissivity of the surface material. Since
the area required is inversely proportional to the emissivity, the mass of the system can be reduced
if the emissivity of the surface is increased. A method to increase the emissivity of a surface whose

material does not have a large enough emissivity is to coat the surface with a material which has a
greater emissivity. Coatings considered were AlyO3, ZrOy, and MgO. Al,O3 was chosen

because it had the highest value of emissivity over the temperature range of interest. Its emissivity
ranged from 0.85-0.95 (Dieckamp, p. 112). Both the heat pipe and radiator are coated with
Al,O3.

5.4. Calculations

A basic diagram of the proposed heat pipe system is shown in Figure 5.2. Hot gas enters one
end of the radiator system, flows through the manifold into which the evaporator section of heat
pipes protrude, and exits at a lower temperature. The purpose of the calculations was to determine
the temperature of each heat pipe unit and thus the energy dissipated by that unit, on which basis

the number of heat pipes necessary to dissipate the required amount.of heat could be found.

Figure 5.2 - Section of Heat Pipe Radiator System



5.4.1. Basic Energy Equation

The equation used to calculate the energy dissipated by each heat pipe was:
Q@) = £ 6 App (Tpp@* - T + n £ 0 A (Thp(2)* - TH

where Q(z) = energy dissipated by a heat pipe unit
€ = emissivity of the coating
o = Stefan-Boltzmann constant, 5.670 X 10-8 w/m?2 x4
1 = fin efficiency

Ahp = surface area of the heat pipe

Ag = surface area of the fin
Thp(z) = operating temperature of the heat pipe (position dependent)
T = ambient temperature.

A computer code was written which uses this equation to find the number of heat pipes
necessary to dissipate a given amount of heat when the inlet and exit temperatures are specified.
The code calculates the operating temperature of each heat pipe unit, the amount of heat dissipated
by each unit, and finally, the number of heat pipe units needed and the total radiator mass.

5.4.2. Assumptions

Several simplifying assumptions were made before the equation above was used in the

program. These assumptions were:

1. n =0.5, a conservative estimate since fin efficiency is likely to be above this value

because the fins are relatively small in width

2. £=0.85, a conservative estimate since it is the lower end of the range of 0.85-0.95
3. each heat pipe is isothermal (see 5.2. Priniciples of Operation)

4. the fins operate at the same temperature as the heat pipe; a reasonable assumption

considering that the fins are not very wide and aluminum has a high thermal

conductivity



5. the temperature of each heat pipe is the temperature of the gas with which it is in
contact in the manifold; a reasonable assumption considering that the evaporator region
will be completely submersed in the gas and will have numerous small fins protruding
into the gas flow to improve convective heat transfer
6. the ambient temperature in space is 0 K.
5.4.3. Preliminary Calculations
Preliminary calculations were necessary to determine the area of the fins and the surface of the

heat pipe. Given that the radius of the heat pipes was to be 1.5 cm and the length was to be 4 m,

the area was calculated as follows:

App=2Trh =27 (015 m) (4 m)=0377 m2.

The fin area was calculated given that the length was the same as that of the heat pipe, 4 m, and that

the width was 0.1 m. The product of length times width was multiplied by two to account for the

fin radiating from both sides.
Af=21w=2(4m) (0.1 m)=0.8m2

Based on the assumptions and the preliminary calculations, the basic equation can be simplified

to the following form:

Q=6 (Tyy()* (Apy + M Ap)
Q=3.74X 10°11 xwx4 (Thp(z))4.

An additional prelimmary calculation was undertaken to insure that the heat pipe capability was
not going to be exceeded given the operating conditions. The first heat pipe unit in the system
dictated the limitations because it would be operating at the highest temperature and rejecting the
largest amount of heat. The limiting radial heat flux was estimated to be 800 kW/cm? (see Table
5.1). This value is reasonably conservative because it falls in the middle of the demonstrated radial
heat flux range, but is below that actually demonstrated for the chosen mesh. The heat dissipated

by the first heat pipe at the maximum operating temperature was determined:




Q) =5.34 X 1011 gw/K4 (800 K)% = 21.87 kW.
The maximum length of evaporator section which could protrude into the gas flow and still

maintain the radial heat flux below its limiting value was calculated as follows, assuming that Q,

was 25 kW to insure conservatism:

25.0kW /2 mrhg = 0.8 kW/cm?2

he = 25.0 kW / (0.8 kW/ecm? x 2 x 7t x 1.5 cm) = 3.32 cm.

Thus, the evaporator section can protrude 3.32 cm into the gas flow in the manifold without
exceeding the limiting radial heat flux value.
5.4.4. Mass Calculation

The mass of the unit was calculated in the computer code by multiplying the necessary number
of heat pipe units by the weight of an individual heat pipe unit. The weight of the unit has three
main components: the container, the fluid, and the fin. The mass of the wick can be neglected

compared to the masses of these three components. The mass of a unit can then be calculated as

follows:
mass =T h (ro2 - riz) Pgs + 05nh (ri2 - rwz) PNa* hwt PAl
where  h = length of the unit, 4 m

I, = outer radius of the heat pipe container, .015 m
‘ri' = inner radius of the heat pipe container, .0135m
rw: inner radius of tl;e wick, .0125 m

w = fin width, 0.1 m

t = fin thickness, 3 mm

Pgs = 7850 kg/m3

Pap=2700 kg/m3



and the 0.5 factor in the second term accounts for the fact that the wick is half
full of the working fluid.

The result is that the mass of a single heat pipe unit, consisting of the heat pipe and fin is 7.607 kg.
5.4.5. The Program

The program written to do the heat pipe calculations allows the user to input the inlet
temperature, the outlet temperature, and the amount of heat to be dissipated. It uses the basic
energy equation and the unit mass formulation to determine the size of the system necessary. A
listing of the program is provided in Appendix 5.1.
5.4.5.1. Mass Flow Rate

Using the specified inlet and outlet temperatures and the amount of heat to be rejected, the mass

flow rate necessary is calculated from:

Q=mc (T;-T,)
where  m = mass flow rate
¢ = specific heat of the gas.
Although the specific heat actually varies with temperature, the relationship is fairly linear
(Incropera and DeWitt, p. 768). Thus, to calculate the mass flow rate the inlet and outlet
temperatures are averaged and the specific heat for the average temperature obtained.
5.4.5.2. Algorithm
The basic algorithm of the program begins with the calculation of the heat loss by the first pipe
using the basic energy equation. The temperature of the gas after it transfers heat to the first pipe is

then calculated using:

Tp=T)-Q/(mxc)
This temperature is used to calculate the heat rejection by the second pipe. Since the heat pipe units
are arranged in a series configuration, the temperature of the fluid immediately after it transfers heat
to the first pipe is the temperature of the gas when it reaches the next pipe. This process is repeated

for additional heat pipes until the specified amount of heat is rejected or the specified outlet

temperature is reached. The number of heat pipes necessary is then multiplied by the unit mass to



determine the system mass.
5.4.5.3. Environment

The code has the capability of calculating radiator size for three environments, in space, on the
surface of Mars, and buried underground on Mars. Since the only mechanism for energy loss in
space is radiation, the basic energy equation can be used unaltered. On Mars energy is lost through
convection and radiation. The basic energy equation must be modified with a term to account for
convection. The value used for ambient temperature temperature on Mars is 333 K. An appropriate
convection coefficient is calculated for each heat pipe unit based on operating temperature. The

convection coefficient is calculated using the properties of carbine dioxide, since the atmosphere of
Mars is predominantly composed of CO,. When the radiator is located underground heat is

rejected by conduction. This scenario was treated as conduction from a flat plate in a semi-infitine

solid. The heat rejection was calculated from (Rohsenow and Hartnett, p.3-120):

Q=ka (T}1p - Ty,) 21/ (In (2nx/b))
where  k = thermal conductivity
a = length of the unit, 4 m
T, = atmospheric temperature, 333 K
x = depth at which the radiator is buried
b = width of the unit, 0.1 m.
The depth of burial is assumed to be 2 m. Since the thermal conductivity for Martian soil was

unavailable the thermal conductivities of sand (0.27 W/mK) and soil (0.52 W/mK) were averaged

to obtain an estimate (0.37 W/mK) to be used in the calculations. The resulting expression for

energy dissipation was:
Q=.00192 W/K (Thp - 333)K.
5.4.5.4. Numerical Correlations

Numerical correlations were incorporated as functions in the code. Functions were included to

calculate the temperature dependent parameters of specific heat, thermal conductivity, and Nusselt



number. The numerical expressions for specific heat and thermal conductivity were obtained by
fitting a curve to tabular data (Incropera and DeWitt, p. 768). Expressions for Nusselt number and
the Prandtl and Rayleigh numbers necessary to calculate it were found in a heat transfer textbook
(Incropera and DeWitt, p. 767-768).

5.5. Results

5.5.1. Preliminary Results

The specified inlet and outlet temperatures of the radiator were 677 K and 428 K, respectively.
The amount of heat to be dissipated was 738 kW. The program was then run under the condition
that the environment was space. The resulting mass flow rate was calculated to be 2.43 kg/sec.
The number of heat pipes necessary to meet these design criteria was 246. The resulting mass of
the radiator was 1870 kg. With the design specifications remaining the same, the program was run
under the condition that the environment was on Mars. The number of heat pipes necessary for
energy rejection in this case was less that that required in space. The program was then run for the
case of the radiator buried underground. The number of heat pipes necessary under this condition
was significantly larger than under the other two conditions.

The option of operating the radiator underground on Mars was disregarded because the number
of heat pipes necessary for this mode was significantly larger than for either of the other two
modes. The limiting case then was operation in space. Since the number of heat pipes required for
energy rejection in space was more than that on Mars, the final heat pipe unit numbers and radiator
mass are based on this case. The program output is included in Appendix 5 2.

5.5.2. Modified Results< _ |

The probability of non-failure Qas calculated to be 0.864 for the heat Apipe design (see VIIL.
Space Logistics). The number of heat pipe units necessary to compensate for failure due to
micrometeroid penetration was obtained by dividing the number of heat pipes units necessary to
dissipate the required amount of heat by 0.864. This resulted in a value of 280 heat pipe units.
This made the final mass of the radiator 2130 kg. Due to the addition of heat pipe units to

compensate for failure, a valve was inserted between the initially calculated number of heat pipe



units, the primary radiator, and the additional heat pipe units, secondary unit. The valve is initially
closed but can be opened when failure occurs in the primary radiator unit which warrants additional
heat pipe units.

A diagram of the heat pipe radiator unit, including the dimensions of the components, is shown
in Figure 5.3. A diagram of the primary radiator system is shown in Figure 5.4. The primary
radiator system is 12.3 m long and 8 m wide. The total area of the primary radiator system is 98.4

m2. The secondary radiator system is 0.4 m long and 8 m wide and is 3.2 m2.

— 3 cm ~<—Olm
o]l

Fin ———__|

Heat Pipe ]

111
L
1

Flow in —*Q — Flow out

Figure 5.3 - Heat Pipe Unit
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Figure 5.4 - Heat Rejection System
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Appendix 5.1 - Program Listing
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Appendix 5.2 - Program Output
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6. RADIATION SHIELDING

The proposed design is for an unmanned mission to Mars followed by six years of
operation on Mars. Consequently, radiation shielding for the mission was determined to be on the
order of that required for the SNAP reactor nuclear power systems with doses on the order of the
SP-100 mission to the equipment. The specifications for the SP-100 dose rates for an instrument-
rated mission are 1013 neutrons/cm?2 and 5x105 rads for gamma rays over a 7.3 year full power
lifetime at a 4.5 meter diameter dose plane that is 22.5 meters from the center of the reactor. This
results in 5.1x105 rads over the system lifetime at the dose plane (1). )

Utilizing the weight scaling factors developed by Hedgecock and German (2) for

instrument-rated shadow shields similar to that of SNAP reactor nuclear power systems the

shielding weight was determined. Reactor power, dose rate, and principle overall dimensions

make up seven weight scaling factors (wp, Wg, W(, . . . ,w@) that are multiplied by the base case
shielding weight (m)
Mm=mg X (WA X WB X WC X WD X WE X WE X W(3) 6.1)

to find the resultiné weight (m) as in Equation 1. The instrument-rated shadow shield parameters
are determined according to Figure 6.1 and the weight scaling factors are determined using the
parameters and Figure 6.2. For the instrument-rated shadow shield the base case weight is 844
pounds while the other base case parameters are listed with the actual parametric values and
resulting weight scaling factors in Table 6.1. This results in a shield mass of 1122 pounds or 509
kilograms.

The shielding is comprised of tungsten to attenuate the gamma rays and lithium hydride to
absorb and moderate neutrons. The total neutron shield weight was taken equal to 1.39 times the

weight of the lithium hydride neutron shield material alone to allow for the weight of structural

members.



(4)

(G)

1nstrument-ratcd shadow ashield

Parameters

‘A = Reactor power

B = Shadow cone diameter

at reactor midplane
Fuel element length

= Separation distance
Dose plane diameter

= Core diaameter

Dose rate at dose plane

Ommo O
tl

L

Figure 6.1

.

Reactor Radiation Shielding Design and Parameters
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Table 1p.1
Instrument-Rated Shadow Shield

Base Case Actual Weight

Parameter Value (2) Value Scaling Factor
A=Reactor Power 600 kWe 300kWe 0.81
B=Shadow cone diameter

at reactor midplane 20 in. 47.2 in. 2.61
C=Fuel element length 201in. 11.8in. 0.84
D=Separation Distance 50 ft. 73.8 ft. 0.62
E=Dose plane diameter 25 ft. 14.8 ft. 0.72
F=Core diameter 10 in. 23.61n. 1.29

G=Dose rate at dose plane  2.8x1012nvt. eq.  9.15x1011nvt. eq. 130
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7. SPACE LOGISTICS
Mission trajectory

The mission will be initiated with the launch of the MPR-300 aboard one of the space
shuttles. Maximum payloads for this launch vehicle are estimated at 35 metric tonnes (MT).
Assuming the dimensions of the MPR-300 are compatible with those of the shuttle cargo bay, a
single launch would deliver the 8,000-10,000 kg craft into low earth orbit (LEO = 320km). There,
the craft would be deployed and cast away from the shuttle. In preparation of obtaining escape
conditions from the Earth's gravitation, a chemical booster rocket attachment would be ignited.
The transport from one orbit to another for the case of a tangential thrust is described by the

following relation:

- Equation 7.1 t=WR (l/ry- /1) [1]
F /¢
where F/W = thrust to weight ratio
R = Earth’s radius
gy =981 m/s?
rg = initial orbit radius

r =orbitradius at time t

With a 100 N chemical thruster, a lb MT ¢raft has a thrust-to-weight ratio of 1.02x10°3; to obtain
a geosynchronous orbital radius from an initial orbit 320 km in altitude, the craft requires 100 N
constant ﬁngcnﬁﬂ thrust for abo‘ut 38.8 days Alternatively, this task could be accomplished using
the MPR-300's main propulsion system which was designed for the interplanetary portion of the
flight. The main thrusters provide a.thrust-to-weight ratio of ‘3.67x10'5; although there is some
atmospheric drag in LEOQ, its effect only becomes significant below altitudes of 200 km and thrust-
to-weight ratios of 1079 are sufficient to compensate for this effect. Using this in Equation 7.1

yields an orbit transfer time of 1077 days or about 36 months. The reason for choosing a chemical



rocket booster is obvious: mission objectives require a total flight time of approximately 6 months
and so 38.8 days is acceptable for LEO to GEO orbit transfer while 1077 days is not.

The next portion of the flight is that from high Earth orbit to Mars orbit. The flight
mechanics involved were highly simplified by assuming the craft is far enough from the Earth to
neglect its gravitation. This assumption is reasonable considering the previously described orbit
transfer. The spaceraft never really approaches a stable geosynchronous orbit (35,870 km) but a
highly eccentric one which allows it to eventually escape Earth orbit. In addition, the flight
distance was computed from the average radii of revolution about the sun for the Earth and Mars:
this implies the necessity of good timing for a rendezvous with Mars on its closest approach to
Earth. To further simplify the mission, a "crow flight" path was assumed as well as constant
acceleration and craft mass throughout the flight.

Taking all the simplifications into consideration yields a simple equation for rough

estimates of flight time and propellant consumption (see Equation 7.2). Although this formulation

Equation 7.2 t = [2mx/T]"2
where m = total craft mass
x = flight distance
t = flight time

T =total thrust

neglects gravitational €Mfects while near the earth, it also neglects decreasing system mass due to
propellant consumption (a large percentage of the total mass) and initial velocity: both of these
effects would shorten the flight. With these considerations, Equation 7.2 should yield a
conservative estimate of flight time and thus propellant consumption.

Once having reached Mars, the MPR-300 craft will implement aerobraking in the Martian
upper atmosphere to slow itself and approach a stable orbit of about 320 km in altitude. This will

keep the craft sufficiently high to avoid significant atmospheric drag losses over long periods. The




craft will then initiate entry into the Martian atmosphere with retroactive bursts of the main
thrusters. An ablative heat shield on the ship's fore end will protect the craft in the entry stage.
Shortly thereafter, parachutes will be deployed to slow the descent to less than 20 fps [2]. As a
reference, 30 fps is a typical parachute letdown of a man; the more sensitive reactor system would
probably tolerate only less than this. It is therefore necessary to have a damping mechanism to

absorb the shock of touchdown.

Propulsion

The main propulsion system consists of an array of MPD (magnetoplasmadynamic)
thrusters, 4 operating simultaneously. These thrusters were selected from a variety of electrically
driven ion thrusters on the basis of high efficiency, high specific impulse (see Table 7.1), and
compact size (each is less than 12" long and 6" in diameter). Also, the unit's small power
requirements allow for modular fitting to the supplied power. Ammonia was chosen over argon
and hydrogen as the propellant for the MPD's based on experimental data [3] which showed it to
be the most efficient of any studied. For the operation parameters given in Table 7.1, the MPD
produces a thrust of 0.9 N. Power supply limitations restrict the number of units, to be operated
simultaneously, to 4 for a total thrust of 3.6 N and power consumption of 296 kwe. To insure
reliability, a total of 13 thrusters were included in the design based on a unit life of 3 months for

similar ion thrusters [3].

- Table 7.1
MPD Thruster Parameters [3]
current : 2000 A
voltage : 370V
thrust : 09N

propellant consumtion rate : 0.015 g/s




specific impulse : 6140
efficiency 1 36.6%

Using Equation 7.2 and parameters from Table 7.1, a 10 MT craft with 4 MPD's operating would
travel to Mars in 242 days and consume 1257 kg of NH3. For reasons of improving reliability, an
extra NHj3 propellant tank has been added to the final design.

The MPD thruster operates in a pseudo steady state mode and requires a pulsed current
with a large DC component. The unusualiy high currents necessary to operate them are readily
supplied by homopolar generators. These devices, although used only experimentally at present,
are capable of producing large currents in the pulse mode for extended periods [4]. For their
inclusion in this design it was assumed that current work on modularization of these generators has
been successful and that homopolar generators are a scalable power source. Advantages of using

these devices, as opposed to ordinary generators, is the omission of transformers and wave

rectification equipment.

Propellant tank design considerations
Proper analysis of pressurized tanks in a space environment requires detailed consideration of
radiative heat transfer. While free space behaves as a blackbody radiating at 3 K, objects in space
do not necessarily approach this condition since they are continually being irradiated by a variety of
celestial bodies such as the sun and 'planetst. By evaluating the impact of each radiation source on
pressurized tanks of cr{fogenic fluid it is p;)ssible to determine the minimal design specifications
necessary for their survivability in a stellar environ.
First, consider a spherical tank one astronomical unit from the sun and orbiting about the
Earth. To determine the tank wall thickness required to contain the pressurized NHj it is first -

necessary to calculate the equilibrium temperature. Performing an energy balance on the tank

Equation 7.3 o GAg - €0 Ts*Ag = Mep dT./dt
P%is



where o = total hemispherical absorptivity
G =total irradiation (W /mz)
Ag = surface area
£ =total hemispherical emissivity
C = Stephan-Boltzmann constant
Ts = surface temperature
M = mass of tank

Cp = specific heat of tank material

For the given orbit, the total solar irradiation Gy, is 1353 W/m? and its spectral dependence may
be approximated as if it had been emitted by a blackbody radiating at 5800 K. For the Earth, its
contribution at low orbits is a total irradiation Gearth of 340 W/m?; it may be modeled as a
blackbody emitting at 280 K. The spectral dependence of blackbody emitters is well known (see
Figure 7.1), having first been determined by Planck, and is tabulated along with other blackbody
radiation functions {5].

The tank model consists of a sphere continually and diffusely irradiated over one entire
hemisphere while the other side remains in complete darkness. Because the irradiation consists of
essentially parallel rays, the actual irradiation varies sinusoidally over the spheres surface (see
Figure 7.2a). For conservatism, the tanks will assume the maximum irradiation over the whole
hemisphere as shown in Figure 7.2!;; Another important consideration of this model is the thermal
properties of the tank thaterial and content; if the material used has a sufficiently high thermal
conductivity and tank size is small, the tank's dark side will radiate at approximately the same
temperature as the irradiated side.

The initial scoping calculation was based on a plain stainless steel tank with a lightly
oxidized surface. The spectral absorption for this surface was approximated using the following

equation and the data in Figure 7.3.
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Equation 7.4 £) +o()+f’~)‘ =1
where f'), = spectral reflectivity
o , = spectral absorptivity

T 3= spectral transmissivity

Since the tank material will almost invariably be opaque, the transmissivity will be zero. Thus,
knowledge of £a implies knowledge of X - The absorptivity of stainless steel used in the
calculations was made consistently higher than the actual value. Its spectral dependence was

approximated as follows:

{0.65 Oum< A< 1pum
oy ={040 lpm< )< 4um
{030 4um < ) < eoum

The relationship between the total hemispherical absorptivity, ¢, in Equation 7.3 and the spectral

absorptivity is as follows:

Equation 7.5 X = JoMEp(),T) )
I Ep(a,1)d)
where E) p (A,T) = spectral emissive power of

-

a blackbody at temperature T

The value of the integral in the denominator of Equation 7.5 is tabulated for bounds of 0 tojwhere )
takes on many incremental values; this is the radiation function Fg_)). The radiation function
gives the ratio of the total emission from a blackbody at a prescribed temperature for the
wavelength interval 0-A. Assuming &, (}) is constant over certain intervals allows for their

removal from the integral in Equation 7.5. Total absorptivity may then be found as follows:




Equation 7.6 o = O()‘F(o.).) +e, (F(O‘/\z) - F(o_,\‘)) + ..
%), (-0 ) - F(0-),,))

Evaluation of %5p]ar in this way yields 0.579 for the solar absorptivity. MultiplyingQGolar and the
total solar irradiation Ggolar (=1353W/m2) yields Gaps = 783.4 W/m?. Analyzing the irradiation
from the Earth in a similar manner reveals Gapg= 102.0 W/m? for the Earths radiation. Now,
assuming the whole tank is radiating at one témperaturc, then the tank's emissive power must be
half that of the total Gabs(=885.4w/m2) since only one half of the tank is being irradiated while
both are emitting. Thus is is necessary to find the temperature at which stainless steel has an
emissive power of 885.4 W/m?. This may be found from Equation 7.1 by assuming steady state
conditions and taking into consideration the temperature dependence of the emissivity £ ; o¢ is a
weak funtion of temperature. Figure 7.4 illustrates the effect of increasing tank temperature on
emissive power. The necessary operating temperature is slightly less than 500 K.
Since an approximate equilibrium temperature for the propellant tanks is now known, the
minimum required tank thickness for assured integrity may now be computed. For stainless steel
Oyield = 69,000 psi [6] and from Figure 7.5 the vapor pressure of NH3 at 500 K is well above 1000
psi [7]. | '

Equation 7.7 t= p;)R/20'
' - where t - tank wall thickness
pg = interior pressure
O =design stress of tank material
R = tank radius

Using a design stress of 34,500 psi in Equation 7.7, one obtains a tank wall thickness of 7.25 mm

for a 1 m diameter tank. This corresponds to a tank mass of 176.5 kg each; at 500 K this would
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require more than S tanks (=882 kg) for the MPR-300 transport. This is a rather large mass and
the problem deserves further investigation to reduce the tank temperature and pressure, and hence,
propellant tank mass.

Upon investigation of the radiative heat transfer characteristics of other materials, a more
viable solution was found. The new design requires one additional assumption: that the propellant
tanks are always oriented with a highly reflective side toward the sun. The new tank is, as before,
constructed from stainless steel; however, one half of each tank is to be coated with an evaporated
aluminum film, the other side is to be heavily oxidized. This kind of system is desirable since the
aluminum film provides a very high reflectivity while the oxidized stainless steel has a large
emissivity. Handling the radiation absorption analysis as before (with the additional assumption),
the total irradiation absorbed from the sun and Earth are 139.7 W/m? and 17.0W/m? respectively
for a total of 156.7 W/m? absorbed. Since the emissivity data for aluminum film is available only
at 300 K (£ = 0.03 [5]), the energy balance equation (Equation 7.3) will be evaluated at this
temperature. From the second term of Equation 7.3, the emissive power of the Al film is13.78
W/mZ. The oxidized side of the tank, however, has an emissive power of 252.6 W/m2. With
these figures it is apparent that the tank - if initially above 300 K - would tend to decrease its
temperature until an equilibrium condition was achieved at some temperature below 300 K.

Knowiné that the tank temperatures can be maintained below 300 K allows for reevaluation
of propellant vapor pressures and thus the required tank wall thickness, from Figure 7.5a, the
ammonia vapor pressure at 300 K i.s 166 ﬁsi. Using Equation 7.7 for a tank 1 m in diameter, the
necessary tank wall thitkness is 1.20 mm. This is a marked improvément over 7.25 mm from the
prior design; the new tank mass is thus 29.2 kg per unit. The density of NH3 at 300 K is 37.2
l'bmlft3 (595 kg/m3, see Figure 7.5b). The required propellant mass of 1257 kg will therefore need
about 4 tanks for a total propellant tank mass of 116.8 kg: a reduction in total tank mass by a factor
of 8 over the first design!

Reiterating some of the conservative approximations: when the tanks are in orbit about the

Earth they are being subjected to the most intense irradiation of the entire flight: the idea being
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survivability under the most harsh conditions, the actual absorptivities are smaller than those used
in the analysis and so the actual total irradiation absorbed Gy is less, the energy balance showed
that the system at 300 K would tend to decrease its temperature and hence actual tank wall
thicknesses are larger than necessary to meet pressure requirements at 300 K. Although this
design is purely conceptual, the analysis used does present conservative estimates for the pressure

tank parameters in a space environ. More importantly, it characterizes the advantages to be had in

careful selection of materials.

Micrometeoroid damage and failure probabilities

The vast regions between stellar systems, typically referred to as voids, are infact not
devoid of matter. Although much has yet to be resolved, the existence of particulates and
micrometeoroids in space is known and they seriously compromise the survivability of space
systems. Careful consideration of micrometroroid effects is therefore necessary to safegaurd
| against potentially debilitating damage otherwise incurred.

Three principle mechanisms by which meteoroids cause damage are: erosion, spalling, and
puncture. The abrasive action of meteoroids on metal surfaces may exceed 2x107* cm/yr [1].
Meteoroid fluxes may, therefore, lead to significant attrition of a radiators emissive coating over
long periods and result in reducing its radiative power; additional radiato‘r area would then be
necessary to accomodate this reduction in radiator effectiveness. In addition, solar protons may
erode another 1073 - 104 cm/yr frc;m exposed surfaces; this effect, however, quickly diminishes
as the inverse square Of the distance from the sun. ’Highly reflective surfaces are effected in a
similar manner. since they are typically either polished metals or an evaporated film. Evaporated
films may be on the order of several atomic diameters thick and thus its degradation below the
acceptable limits of performance may occur in much less than a years time. Thickening of the film
layer may sufficiently extend performance life.

Spalling, the process by which small metal chips are expelled from an interior surface due

to an external impact, may cause problems in the power conversion system if the metal chips reach



the turbine or bearings. Due to the large size of the hear pipe radiator in the MPR-300 system, the
majority of the spalling is expected to occur there. The radiator modules, however, do not carry
primary coolant but their own working fluid. Thus, spalling would have its most serious effect on
the heat pipe manifold and other piping in the power conversion cycle, all of which carry primary
coolant.

The puncture of sytem piping by micrometeoroids also poses a serious problem. The
resulting holes in piping and tanks allows the slow release of coolant and propellant respectively.
This implies the necessity of a reserve coolant supply as well as extra propellant and redundant heat
pipes. Since only sparse knowledge of the meteoroid environment in space exists, it is difficult to
establish protection criteria. However, the meteoroid penetration theory developed by Summers
and Charters [8] provides a means of calculating the probability of no system failure due to
meteoroid damage (Pp) as a function of exposed area, exposure time, and target material properties
( see Figure 7.6 and Table 7.2). With these data it is possible to view the required propellant tank
wall thickness from another design perspective as well as provide an estimate of the additional heat
pipe modules necessary to accomodate failures.

Considering a propellant temperature of 300 K, the required tank wall thickness was found
to be 1.2 mm stainless steel. From Table 7.2 and Figure 7.6, this yields a Pg of 0.968 for all 4
propellant tanks in a nine month flight. For reliability, an additional tank of NH3 was included in
the design. Computation of the appropriate number of redundant heat pipes was carried out
similarly. The heat pipe walls are composed: of stainless steel 1.5 mm thick and the sensitive area
is 29.5 m?; a nine morith flight yields Py = 0.864. Subsequently, about 13.6% more heat pipes

were added to the design to replace the number of expected module failures.
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IV. Conclusions and Recommendations

Several aspects of the design project should be further examined and a more detailed
analysis performed. Additional neutronics work could include two dimensional and multigroup
computations and examining the possibility of reducing the core size by increasing the enrichment
of the fuel. Thermal hydraulics calculations could be modified by introducing radial conduction
into the model which would lead to two dimensional computations. Changes in the Brayton cycle
would consist of including an intercooler and regenerator to improve cycle efficiency.
Modifications in the heat rejection system design would be performing a finite difference analysis
on the fins and devising a mechanism so that the radiator system could be collapsed for entry into
the Martian atmosphere. Additional propulsion analysis should include a more detailed calculation
of trajectory, a more specific entry and landing plan such as aerobraking, and reduction of trip
time. Overall areas which could be more closely examined are pressure losses and materials. A
more realistic piping diagram should be developed and piping losses calculated for the system.
Also, the pressure drop across the grid plate of the reactor needs to be reanalyzed. A materials
search needs to be performed to identify materials compatible with carbon dioxide at high

temperatures and identify a material for the turbine/compressor shaft.



V. Summary

Overall Hardware Layout

The layout of the pebble bed nuclear space reactor and associated equipment can be
seen in Figure V.1 which is a spacecraft conceptual configuration. A more detailed configuration
of the power system can be observed in Figure V.2. Note the jet engine type design where the
turbine, reactor, and compressor are welded together. The reactor configuration can be seen in

Figure V.3. Also note that the heat pipe radiators complete the power configuration loop but are

not shown.

System Schematic:

The thermodynamic cycle can be seen in Figure V.4. This is a Brayton cycle

consisting of CO, gas coolant and the reactor, turbine, heat pipe radiator, and compressor loop.

The four state points on the figure will be referred to later.

Final Design Description:

The final design description can be observed in Tables V.1 through V.7. The only parameters

not listed in the previous tables are the total mass of the CO,coolant which is 17.2 kg and the mass

flow rate of 2.43 kg/s.
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Table V.1: Reactor parameters

Thermal Output 1 MWt
Electrical Output 300 kWe
Power Density 3.1 W/cm3
Active Core Volume 32,330 cm3

CO?2 fraction 0.37

UN fraction 0.315

PyC fraction 0.315
Peak to Average Flux Ratio 1.12
Power Production

Thermal Flux 91%

Fast Flux 9%
Control Drum Diameter 10cm
Reactor core annular radius 12.8 cm
Central Shaft Diameter 6cm
Reactor Vessel Wall Diameter

inner 4cm

outer 3cm
Peak Fluxes

thermal 4.7E13

fast 7.3E14
Reactor Height 30 cm
Height to diameter ratio 0.81

Table V.2 Fuel Parameters |

UN Fuel Mass =~ 145.7 kg
Fuel Enrichment 8.0%
Mass of U-235 10.8 kg

critical mass at startup 7.6 kg

fuel burnup 3.2 kg
Specific Power 6.86 kW/kg UN
# of Fuel Pebbles 180,000
Pebble Diameter 0.602 cm



Table V.3 System Thermodynamic States*

State Temperature (K)  Pressure (MPa)
1 850 6.58
2 677 3.76
3 428 3.63
4 500 6.90

Table V.4 System Energy Balance

Qn = 1038kW
Qout = T38kW
Wr = S13kW
We = 213kW
h = 289%

%

Refer to Figure V.3 for the state points.
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Table V.5 - Heat Rejection System

e 12.3 m —]

4 m
. D ¥ Flow out

t=3 mm
2

Total Area 98 m

Mass 1870 kg

Heat Pipes 246

Container Material SS 304

Coating ' Al 2O 3

Working Fluid Sodium

Fin Material

Aluminum




Table V.6 Propulsion
MPD Thrusters 13 units
Total Craft Mass 8000 kg

Total Thrust 36N
Propellant NH3
Mass 1571 kg
Flight Time 242 days
MPD power - 296 kW

Specific Impulse 6140 seconds

Table V.7 Masses
*  Propulsion 2350 kg
*  Reactor system and shield 1029 kg
*  Rotating machinery 565 kg
*  Ducting and structure 700 kg
*  Heat pipes 2130 kg
+  Miscellaneous 480 kg
* Total Mass 7254 kg



